Compact and compactly generated subgroups of locally compact groups
نویسندگان
چکیده
منابع مشابه
On component extensions locally compact abelian groups
Let $pounds$ be the category of locally compact abelian groups and $A,Cin pounds$. In this paper, we define component extensions of $A$ by $C$ and show that the set of all component extensions of $A$ by $C$ forms a subgroup of $Ext(C,A)$ whenever $A$ is a connected group. We establish conditions under which the component extensions split and determine LCA groups which are component projective. ...
متن کاملBracket Products on Locally Compact Abelian Groups
We define a new function-valued inner product on L2(G), called ?-bracket product, where G is a locally compact abelian group and ? is a topological isomorphism on G. We investigate the notion of ?-orthogonality, Bessel's Inequality and ?-orthonormal bases with respect to this inner product on L2(G).
متن کاملFinitely generated connected locally compact groups
Hofmann and Morris [6] proved that a locally compact connected group G has a finite subset generating a dense subgroup if and only if the weight w(G) of G does not exceed c , the cardinality of the continuum. The minimum cardinality of such a topological generating set is an invariant of the group, is denoted by σ(G), and is called the topological rank of G . For compact abelian groups of weigh...
متن کاملSpaces of Closed Subgroups of Locally Compact Groups
The set C(G) of closed subgroups of a locally compact group G has a natural topology which makes it a compact space. This topology has been defined in various contexts by Vietoris, Chabauty, Fell, Thurston, Gromov, Grigorchuk, and many others. The purpose of the talk was to describe the space C(G) first for a few elementary examples, then for G the complex plane, in which case C(G) is a 4–spher...
متن کاملFrom Locally Compact Groups
Two Banach algebras are naturally associated with a locally compact group G: the group algebra, L,(G), and the measure algebra, M(G). For these two Banach algebras we determine all isometric involutions. Each of these Banach algebras has a natural involution. We will show that an isometric involution, (*), is the natural involution on £'(<?) if and only if the closure in the strict topology of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1990
ISSN: 0002-9939
DOI: 10.1090/s0002-9939-1990-0993738-2